Simple Amenable C∗-algebras With a Unique Tracial State

نویسنده

  • Huaxin Lin
چکیده

Let A be a unital separable amenable quasidiagonal simple C∗-algebra with real rank zero, stable rank one, weakly unperforated K0(A) and with a unique tracial state. We show that A must have tracial rank zero. Suppose also that A satisfies the Universal Coefficient Theorem. Then A can be classified by its (ordered) K-theory up to isomorphism. In particular, A must be a simple AH-algebra with no dimension growth and with real rank zero. As consequence, if A is a unital separable amenable quasidiagonal and approximately divisible simple C∗-algebra with a unqiue tracial state, then A has tracial rank zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotically Unitary Equivalence and Classification of Simple Amenable C∗-algebras

Let C and A be two unital separable amenable simple C-algebras with tracial rank no more than one. Suppose that C satisfies the Universal Coefficient Theorem and suppose that φ1, φ2 : C → A are two unital monomorphisms. We show that there is a continuous path of unitaries {ut : t ∈ [0,∞)} of A such that lim t→∞ u∗tφ1(c)ut = φ2(c) for all c ∈ C if and only if [φ1] = [φ2] in KK(C,A), φ ‡ 1 = φ 2 ...

متن کامل

Local tracial C*-algebras

‎Let $Omega$ be a class of unital‎ ‎$C^*$-algebras‎. ‎We introduce the notion of a local tracial $Omega$-algebra‎. ‎Let $A$ be an $alpha$-simple unital local tracial $Omega$-algebra‎. ‎Suppose that $alpha:Gto $Aut($A$) is an action of a finite group $G$ on $A$‎ ‎which has a certain non-simple tracial Rokhlin property‎. ‎Then the crossed product algebra‎ ‎$C^*(G,A,alpha)$ is a unital local traci...

متن کامل

Real structure in unital separable simple C*-algebras with tracial rank zero and with a unique tracial state

Let A be a simple unital C∗-algebra with tracial rank zero and with a unique tracial state and let Φ be an involutory ∗-antiautomorphism of A. It is shown that the associated real algebra AΦ = {a ∈ A : Φ(a) = a∗} also has tracial rank zero. Let A be a unital simple separable C∗-algebra with tracial rank zero and suppose that A has a unique tracial state. If Φ is an involutory ∗-antiautomorphism...

متن کامل

Lifting KK-elements, asymptotical unitary equivalence and classification of simple C*-algebras

Let A and C be two unital simple C*-algebras with tracial rank zero. Suppose that C is amenable and satisfies the Universal Coefficient Theorem. Denote by KKe(C,A) ++ the set of those κ for which κ(K0(C)+ \ {0}) ⊂ K0(A)+ \ {0} and κ([1C ]) = [1A]. Suppose that κ ∈ KKe(C,A) . We show that there is a unital monomorphism φ : C → A such that [φ] = κ. Suppose that C is a unital AH-algebra and λ : T(...

متن کامل

Certain Aperiodic Automorphisms of Unital Simple Projectionless C * -algebras

Let G be an inductive limit of finite cyclic groups and let A be a unital simple projectionless C∗-algebra with K1(A) = G and with a unique tracial state, as constructed based on dimension drop algebras by Jiang and Su. First, we show that any two aperiodic elements in Aut(A)/WInn(A) are conjugate, where WInn(A) means the subgroup of Aut(A) consisting of automorphisms which are inner in the tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006